Difference between revisions of "UBISS2024"
Line 1: | Line 1: | ||
− | = Link Page | + | = Link Page = |
https://www.sketching-with-hardware.org/wiki/UBISS2024-Links | https://www.sketching-with-hardware.org/wiki/UBISS2024-Links | ||
Revision as of 20:11, 9 June 2024
Contents
Link Page
https://www.sketching-with-hardware.org/wiki/UBISS2024-Links
Tasks
Project 0: connect a Arduino Nano ESP32 board
- Install the basic software https://labs.arduino.cc/en/labs/micropython
- connect the board via USB
- Make the orange LED (pin 6) blink using micro python https://docs.arduino.cc/micropython/basics/digital-analog-pins/
- Connect an external RGB LED (pin 2, 3, 4), https://www.sketching-with-hardware.org/wiki/RGB_LED
- Control the external RGB LED (on, off, mix color, brightness)
solution Project 0: LED Blinking
1 # Blinky example
2
3 import time
4 from machine import Pin
5
6 # This is the only LED pin available on the Nano RP2040,
7 # other than the RGB LED connected to Nano WiFi module.
8 led = Pin(6, Pin.OUT)
9
10 while (True):
11 led.on()
12 time.sleep_ms(250)
13 led.off()
14 time.sleep_ms(200)
solution Project 0: Control external RGB
1 # RGB example
2
3 import time
4 from machine import Pin
5
6 # RGB LED connected to Nano WiFi module.
7 ledG = Pin(2, Pin.OUT)
8 ledR = Pin(3, Pin.OUT)
9 ledB = Pin(4, Pin.OUT)
10 print("start")
11
12 while (True):
13 print("*")
14 ledG.on()
15 ledR.off()
16 ledB.off()
17 time.sleep_ms(250)
18 ledG.off()
19 ledR.on()
20 ledB.off()
21 time.sleep_ms(250)
22 ledG.off()
23 ledR.off()
24 ledB.on()
25 time.sleep_ms(250)
Project 1: read Acceleration from Arduino Nano ESP32 board
- read data from the accelerometer and the gyro and print them (Arduino IDE) https://docs.arduino.cc/micropython/basics/board-examples/
- extend you program to write the data from the accelerometers to a file, https://www.sketching-with-hardware.org/wiki/FileIO
- transfer the file to your computer
- optional: add the photo resistors to your board, read their values, and write them to the file, too, https://www.sketching-with-hardware.org/wiki/LDR
solution Project 1: Read Accelerometer and Gyro
1 import time
2 from lsm6dsox import LSM6DSOX
3
4 from machine import Pin, I2C
5 lsm = LSM6DSOX(I2C(0, scl=Pin(13), sda=Pin(12)))
6
7 while (True):
8 accel_data = lsm.accel()
9 print('Accelerometer: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*accel_data))
10 gyro_data = lsm.gyro()
11 print('Gyroscope: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*gyro_data))
12 print("")
13 time.sleep_ms(100)
solution Project 2: Read analog values - Code Example Arduino Nano Connect RP2040
A0 is the analog input with 16 bit resolution. It reads the analog value every second and print it to the console-
1 #Example usage for Arduino Nano
2 from machine import Pin, ADC
3 from time import sleep
4
5 analogPin = ADC(Pin(26))
6
7 while True:
8 analogVal16 = analogPin.read_u16()
9 print(analogVal16)
10 sleep(1)
Project 2: Jupyter Notebook
- connect the board
- install the Juypter Notebook, https://www.sketching-with-hardware.org/wiki/Jupyter
- read the accelerometer and the gyro and show it in the notebook
Task 2.1: is it moved?
- read acceleration and gyro
- calculate the differences between values
- show an ouput when it is move
- create a file on the device that logs, when it is moved
Task 2.2: it was turned upside down?
- read acceleration and gyro
- make a rule based "AI" that records
- it was put upside down
- it was turned 360
- it was moved "quickly"
Task 3: ML on Arduino Nano Connect RP2040
- use https://github.com/eloquentarduino/everywhereml to detect the same gestures as in 2.2
Task 4: connect both boards to WIFI
- connect both boards to WIFI using Tutorial_Network
- use the Arduino Nano ESP32 as output (showing a color)
- use the Arduino Nano Connect RP2040 as input (recognize with rules 3 gestures)
Links
Micropython Basics
https://docs.arduino.cc/micropython/#micropython-101 https://docs.arduino.cc/micropython/basics/board-examples/ https://www.codemotion.com/magazine/backend/getting-started-with-micropython-on-arduino-nano-rp2040-connect/ https://www.penguintutor.com/programming/arduino-python https://micropython.org/ https://docs.arduino.cc/micropython/micropython-course/course/installation/ https://docs.arduino.cc/micropython/micropython-course/course/examples/ https://wellys.com/posts/rp2040_micropython_1/ https://micropython.org/download/RPI_PICO_W/
Python / Jupyter Notebooks for Hardware
https://www.sketching-with-hardware.org/wiki/Jupyter https://towardsdatascience.com/micropython-on-esp-using-jupyter-6f366ff5ed9 https://www.datacamp.com/tutorial/markdown-in-jupyter-notebook https://saturncloud.io/blog/how-to-import-python-file-as-module-in-jupyter-notebook/ https://jupyter.org/install https://www.geeksforgeeks.org/install-jupyter-notebook-in-windows https://www.instructables.com/Micropython-on-ESP-Using-Jupyter/
Development environments
https://labs.arduino.cc/en/labs/micropython https://labs.arduino.cc/en/labs/micropython-installer https://www.arduino.cc/en/software
Libraries
https://github.com/jposada202020/MicroPython_LSM6DSOX
Data sheets and resources
https://micropython.org/download/ARDUINO_NANO_RP2040_CONNECT/ https://docs.arduino.cc/resources/pinouts/ABX00083-full-pinout.pdf
Tutorials
https://docs.arduino.cc/tutorials/nano-rp2040-connect/rp2040-openmv-setup/ https://docs.arduino.cc/tutorials/nano-rp2040-connect/rp2040-data-logger/
Machine Learning Basics
https://github.com/eloquentarduino/everywhereml https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html https://www.linkedin.com/pulse/arduino-truly-tiny-machine-learning-simone-salerno https://eloquentarduino.com/posts/micropython-machine-learning https://github.com/mocleiri/tensorflow-micropython-examples https://dev.to/tkeyo/tinyml-machine-learning-on-esp32-with-micropython-38a6
Networking Basics
https://docs.arduino.cc/tutorials/nano-rp2040-connect/rp2040-ap-web-server-rgb/ https://docs.micropython.org/en/latest/library/socket.html
Local Links
https://ubicomp.net/sw/db1/var2db.php? http://localhost:8888/notebooks/ArduinoNanoRP2040_v01.ipynb http://localhost:8888/doc/tree/create-ML-model01.ipynb
Reading
Required Reading before the course
Albrecht Schmidt. 2020. Interactive Human Centered Artificial Intelligence: A Definition and Research Challenges. In Proceedings of the International Conference on Advanced Visual Interfaces (AVI '20). Association for Computing Machinery, New York, NY, USA, Article 3, 1–4. https://doi.org/10.1145/3399715.3400873 (4p) https://uni.ubicomp.net/as/iHCAI2020.pdf
A. Schmidt and K. van Laerhoven, "How to build smart appliances?," in IEEE Personal Communications, vol. 8, no. 4, pp. 66-71, Aug. 2001, doi: 10.1109/98.944006. (6p) https://www.eti.uni-siegen.de/ubicomp/papers/sl_ieeepc2001.pdf
Schmidt, Albrecht. "Understanding and researching through making: a plea for functional prototypes." interactions 24.3 (2017): 78-81. (4p) https://www.sketching-with-hardware.org/files/functional3058498.pdf
Huy Viet Le, Sven Mayer, and Niels Henze. 2020. Deep learning for human-computer interaction. interactions 28, 1 (January - February 2021), 78–82. (5p) https://doi.org/10.1145/3436958 https://sven-mayer.com/wp-content/uploads/2021/01/huy2021deep.pdf
Le, Huy Viet; Mayer, Sven; Weiß, Max; Vogelsang, Jonas; Weingärtner, Henrike; Henze, Niels (2020) Shortcut Gestures for Mobile Text Editing on Fully Touch Sensitive Smartphones. In: ACM Trans. Comput.-Hum. Interact., vol. 27, no. 5, pp. 38, 2020, ISSN: 1073-0516. (38p) https://sven-mayer.com/wp-content/uploads/2020/09/le2020shortcuts.pdf
Hurwitz, Judith, and Daniel Kirsch. "Machine learning for dummies." IBM Limited Edition 75 (2018): 9780429196645-6. https://www.ibm.com/downloads/cas/GB8ZMQZ3 (Pages 3-18 and 29-47, this is Chapters 1 and 3) (35p)
Chris Garrett. MicroPython: An Intro to Programming Hardware in Python https://realpython.com/micropython/ (14 pages)
MicroPython Basics https://docs.arduino.cc/micropython/basics/micropython-basics/ (5 pages)
Recommended Reading before the course:
John D. Kelleher, Deep Learning, https://mitpress.mit.edu/9780262537551/deep-learning/
Yuli Vasiliev, Python for Data Science: A Hands-On Introduction, https://nostarch.com/python-data-science
Tutorial on Jupyter Notebooks: https://www.datacamp.com/tutorial/tutorial-jupyter-notebook
Smola, Alex, and S. V. N. Vishwanathan. "Introduction to machine learning." Cambridge University, UK 32.34 (2008): 2008. https://alex.smola.org/drafts/thebook.pdf
Random Commands
pip install micropython-lsm6dsox
picotool.exe load -x C:\Users\ru42qak\AppData\Roaming\OpenMV\openmvide\firmware\ARDUINO_NANO_RP2040_CONNECT\firmware.bin
pip install jupyterlab
pip install everywhereml
python -m pip install jupyter
git clone https://github.com/goatchurchprime/jupyter_micropython_kernel.git
pip install -e jupyter_micropython_kernel
python -m notebook
python -m jupyter kernelspec list
C:\Users\ru42qak\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\jupyterlab>pip install -e jupyter_micropython_kernel
C:\Users\ru42qak\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\jupyterlab>python -m notebook